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Abstract

This report presents a review of a paper written by Apers and
de Wolf [AW19] in which a new quantum algorithm for graph
sparsification relying on nearly linear classical algorithms is in-
troduced, leading to quantum speedups for several problems
such as extremal cuts and Laplacian solving.

1 Introduction

«Graphs are nice [...], but sparse graphs are nicer.»

Graphs are a very common data structure in many ar-
eas of computer science, such as optimization and net-
works. Many practical problems can indeed be reduced
to graph problems, and as such are of interest to com-
puter scientists. Recent works, such as that by Chen et
al., yielded a near-linear time classical algorithm for the
exact maximum-cost flow problem [Che+22]. It is never-
theless possible to get an even better speedup by consid-
ering approximate algorithms. The paper contribution is
the creation of a quantum algorithm for ε-spectral spar-
sification of graphs in time Õ(

√
nm
ε ), proving by the way

the lower bound of their algorithm. Taking into account
the algorithm of Chen et al., it results in an algorithm
generalizable to most graph problems.

1.1 Graphs

Let G = (V,E, ω) be a weighted graph, where V is a set
of vertices, E a set of edges, and ω : V × V → R a weight
function, with |V | = n and |E| = m ≤

(
n
2

)
. G is said

to be undirected if for all i, j ∈ V then (i, j) ∈ E implies
(j, i) ∈ E.
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Figure 1: Example of a weighted graph

The access to the graph are done via the adjacency list.

1.2 Graph Laplacian

Let G = (V,E, ω) be a weighted graph, the Laplacian of G
is an n× n matrix defined as

LG = D −A (1)

where D is the degree matrix and A is the adjacency ma-
trix, defined such that (D)ii =

∑
j ω(i, j) and (A)ij =

ω(i, j). The graph shown in Fig. 1 has the following adja-
cency and degree matrices

A =


0 1 2 1
1 0 2 2
2 2 0 0
1 2 0 0

 , D =


4 0 0 0
0 5 0 0
0 0 4 0
0 0 0 3

 ,

which yield the Laplacian

L =


4 −1 −2 −1
−1 5 −2 −2
−2 −2 4 0
−1 −2 0 3

 .

An interesting property of the Laplacian that arises from
those definitions is that LG is invertible if and only if the
graph G is connected. Equivalently, the Laplacian of a
graph can be expressed in terms of a weighted sum of its
edges Laplacian:

LQ =
∑

(i,j)∈E

ω(i, j)L(i,j) (2)

where L(i,j) denotes the Laplacian of the edge (i, j), defined
as

L(i,j) = (ei − ej)(ei − ej)
T (3)

ei is a unit vector with a 1 in coordinate i and zeros ev-
erywhere else. One can remark that L(i,j) is a very sparse
matrix, with only 4 nonzero entries.

The Laplacian is a positive semidefinite matrix i.e. the
eigenvalues of the Laplacian are non-negative.

The pseudo inverse of a Laplacian L denoted L+, is such
that LL+L = L and L+LL+ = L+.

1.3 Quadratic forms of a Laplacian

The quadratic form of a Laplacian has a number of nice
properties, and can be used to calculate quantities asso-
ciated to the graph. All quadratic forms of a Laplacian
can be expressed, by linearity of the sum, in terms of a
weighted sum of its edges Laplacian:

χTLGχ =
∑

(i,j)∈E

ω(i, j)χTL(i,j)χ

=
∑

(i,j)∈E

ω(i, j)(χ(i)− χ(j))2
(4)

An interesting example, showing how quadratic forms
underlie graphs properties, is that if χs is an indicator
vector on S ⊆ V , the quadratic form χsLGχs is equal to
the value of the cut (S, Sc).
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1.4 Spectral Sparsification

Spectral sparsification of graphs aims to reduce the num-
ber of edges, while keeping an approximation of interest-
ing quantities i.e., approximately preserving all quadratic
forms.

Definition 1.1 (ε-sparsifier). H is an ε-sparsifier of G if
and only if ∀χ ∈ Rn, χTLHχ = (1± ε)χTLGχ.

Using the pseudo-inverse of the Laplacian, this definition
can be equivalently formulated as χL+

H = (1±O(ε))χL+
Gχ.

It is also possible to define an ε-spectral sparsifier tak-
ing into account the positive semidefinite property of the
Laplacian, such that (1−ε)LG ≼ Lh ≼ (1+ε)LG, where ≼
denotes the partial ordering on symmetric matrices. The
three above definitions are equivalent and one should use
one or the other depending on the context.

Theorem 1.2 (Graph Sparsifier). Every graph G has an
ε-spectral sparsifier H with a number of edges in Õ( n

ε2 ).
Moreover, H can be found in time Õ(m).

One should note that this is relevant only when ε ≤
√

n
m

The existence of such ε-spectral sparsifier was proved
by Spielman and Teng [ST11]. Additional work of Batson,
Spielman and Strivastava [BSS12] reduced the lower bound
on the number of edges in the sparsifier to O( n

ε2 ).

2 Classical Sparsification Algorithm

The classical algorithm for graph sparsification is based on
edge sampling, where each edge is added to the sparsifier
according to a fixed probability distribution.

In order to be sure LH effectively approximates LG, the
choice of each pe cannot be done at random. A nearly-
linear classical sparsification algorithm was introduced by
Spielman and Srivastava [SS11], by approximating effective
resistance between any two edges in the graph efficiently,
and thus introducing a way to correctly sampling the edges.

2.1 Effective resistance

In the case of unweighted graphs, the effective resistance
of an edge can be related to the connectivity of the graph:
edges belonging to strong components have a low effec-
tive resistance, and vertex cut (whose removal renders G
disconnected) tends to have a high effective resistance.

Figure 2: Graph illustrating edge of high effective resis-
tance.

The effective resistance of the bold edge is roughly re =
1, while the effective resistance of the other is re ∈ O( 1n ).

Spielman and Srivastava associated then the probability
for an edge to be kept while constructing the sparsifier
proportionally to reωe.

In a graph G = (V,E) the effective resistance re of an
edge e = (u, v), with u, v two nodes, can be expressed with
the quadratic form

Ru,v = (χu − χv)
TL+

G(χu − χv) , (5)

where χi is the ith vector of the canonical basis. [SS11]

2.2 Graph spanner

The distance between two nodes u and v with respect to
G is defined as:

δG(u, v) = min
u→v

∑
i

ω(pi, pi+1)
−1,

which is consistent with the previous definition of effective
resistance of an edge, where {u→ v} is the set of all paths
from u to v in G, each element u → v = {p0, · · · , pk}
is a set of vertices of V . A spanner H of a graph G is
a subgraph of G with fewer edges, where a trade-off is
made between the number of edges and the stretching of
distances.

Definition 2.1. An (α, β)-spanner of the graph G =
(V,E) is a subgraph H = (V,EH) with EH ⊆ E, such
that ∀u, v ∈ V ,

δG(u, v) ≤ δH(u, v) ≤ αδG(u, v) + β.

This definition holds for weighted graphs, in which case
the weight of the kept edges stay unchanged. In the follow-
ing only multiplicative spanners are considered, i.e. β = 0
and α = 2 log n, namely, 2 log n-spanners. Furthermore,
key objects of the algorithm for graph ε-spectral sparsifi-
cation described below are r-packings spanners.

Definition 2.2. Let G be a graph, an r-packings spanner
of G is an ordered set H = (H1, · · · , Hr) of r edge-disjoint
subgraphs of G such that Hi is a spanner for the graph
G−

⋃i−1
j=1 Hj .

Koutis and Xu proposed the following algorithm [KX16],
using the effective resistance of each edge as exhibited by
Spielman and Srivastava to construct t-packings spanner
of the input graph:

Algorithm 1 ClassicallySparsify(G, ε)

1: construct an O( logn
ε2 )-packing spanner H of G

2: G̃← H
3: for all e /∈ H do
4: w.p. 1

4 add e to G̃, with weight 4ωe

5: return G̃

and provided the following theorem:
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3 QUANTUM SPEED-UP FOR GRAPH SPARSIFICATION

Theorem 2.3 (Classical sparsifier). The output G̃ of
ClassicallySparsify on inputs G and ε satisfies with
probability 1− 1

n2

(1− ε)LG ≼ LG̃ ≼ (1 + ε)LG

Moreover, the expected number of edges in G̃ is at most
Õ( n

ε2 + m
2 ).

The proof of Theorem 2.3 [KX16] ensures that the out-
put of ClassicallySparsify is an ε-spectral sparsifier. A
single iteration of the above procedure divides the num-
ber of edges in the output graph by roughly two. Hence,
repeating t ∈ O(log m

n ) times ClassicallySparsify(G, ε′)
with ε′ ∈ O( εt ) results in an ε-spectral sparsifier with Õ( n

ε2 )
edges.

Complexity-wise, the execution time of the provided al-
gorithm is mostly dominated by the construction of the
Õ( 1

ε2 ) spanners, each of which requires time Õ(m), giving
a total time complexity of Õ(mε2 ).

3 Quantum speed-up for graph sparsifica-
tion

Apers and de Wolf propose a quantum analog to the spar-
sification algorithm described in Section 2. They build
on results from classical and quantum algorithms, in par-
ticular the classical algorithm for sparsification by Koutis
and Xu (Algorithm 1), the spanner algorithm by Thorup
and Zwick [TZ05], the quantum algorithm for single-source
shortest-path trees by Dürr et al. [Dü+06], and an efficient
k-independent hash function by Christiani, Pagh, and Tho-
rup [CPT15].

3.1 Quantum spanner algorithm

The quantum spanner algorithm proposed by Apers and
Wolf is heavily inspired by the best classical introduced by
Thorup and Zwick [TZ05]: as such, the classical algorithm
will be introduced before the quantum one.

3.1.1 Classical spanner algorithm

In order to efficiently construct a graph spanner, Thorup
and Zwick [TZ05] designed a classical algorithm based on
shortest-path trees.

Definition 3.1 (shortest-path tree). Inside a graph G =
(V,E), a shortest path tree T , rooted at a node v0 and
covering a subset S ⊆ V of vertices, is a subgraph of G
such that for all nodes vS ∈ S, the distance between v0 and
vS is the same as in the original graph G, and is minimal
in G.

Their algorithm constructs a (2k − 1)-spanner H of G
with O(kn1+1/k) edges, for some k ∈ N. To do so, a family

{A0, . . . , Ak} of node subsets is generated at random such
that A0 = V , Ak = ∅ and for all i < k,

Ai = {v ∈ Ai−1 w.p. n−1/k} , (6)

i.e., Ai contains each edge of the previous subset with
probability n−1/k. At each iteration i ≤ k, for all nodes
v /∈ Ai ∩ Ai−1, a shortest path tree T (v) spanning the
ensemble of nodes V ′ is built from node v. V ′ is defined
such that for all v′ ∈ V ′, the distance between v and v′

is smaller than the distance between v′ and all the nodes
that belongs to Ai. The resulting spanner is the union of
all the shortest path trees created thereby.

3.1.2 Quantum spanner algorithm

The runtime of Thorup and Zwick’s algorithm is domi-
nated by the construction of the shortest path trees. A
quantum algorithm speeding up this construction exists
[Dü+06], and is strongly inspired by Dijkstra’s algorithm.
In the latter, a tree T rooted at a node v0 is recursively
grown by adding the cheapest border1 edge, i.e the edge
(i, j) such that

cost(i, j) = min{cost(u, v)|u ∈ T , v /∈ T } ,

where cost(i, j) = δ(v0, i) +
1

w(i,j) . The quantum time im-
provement arises from a speedup for the selection of the
cheapest border edge. The quantum routine called in the
quantum shortest path tree algorithm is the minimum find-
ing quantum algorithm MINFIND(d, f, g), which takes as
inputs

• a value function f : [N ]→ R ∪ {∞}

• a type function g : [N ]→ N

• an integer d ≤ N

2

and outputs a subset I ⊆ [N ] of size |I| = min{d,M},
where M = |Im(g)|, such that every distinct elements of I
have a different type, i.e. for all i, j ∈ I

g(i) ̸= g(j) ,

and for j /∈ I and i ∈ I, having f(j) < f(i) implies that
there exists an i′ ∈ I so that

f(i′) ≤ f(i) and g(i′) = g(j) ,

i.e., j and i′ have the same type.
Let PL be a subset of nodes and E(PL) the set of edges

such that ∀(u, v) ∈ E(PL), u ∈ PL or v ∈ PL. In Algo-
rithm 2, the functions f and g are both defined on E(PL),
in such a way that g((u, v)) = v and

f((u, v)) =

{
cost(u, v) = dist(u) + 1

w(u,v) if u ∈ PL, v /∈ T

∞ otherwise.

1A border edge (i, j) of T is so that i ∈ T and j /∈ T .
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3 QUANTUM SPEED-UP FOR GRAPH SPARSIFICATION

In other words, we are looking for a subset of the border
edges of the set of nodes PL that contains at most one edge
for each node in PL, and if several edges are possible, the
least costly is kept. A brief explanation follows.

Algorithm 2 QuantumSPT(G = (V,E), v0)

Require: T = (VT = {v0}, ET = ∅) ▷ Shortest path tree
to be grown.

Require: P1 = {v0} and L = 1
1: set dist(v0) = 0 and ∀u ∈ V, u ̸= v0, dist(u) =∞.
2:
3: while |VT | < n do
4: BL = MINFIND(|PL|, f, g)
5: Let (u, v) ∈ B1 ∪ · · · ∪ BL have minimal cost(u, v)

with v /∈ P1 ∪ · · · ∪ PL. ▷ (u, v) is a border edge
6: if w(u, v) = 0 then
7: return T
8: else
9: VT ← VT ∪ {v} , ET ← ET ∪ {(u, v)}

10: dist(v) = dist(u) + 1/w(u, v)
11: PL+1 ← {v} , L← L+ 1

12: while L ≥ 2 and |PL| = |PL−1| do
13: merge PL into PL−1

14: L← L− 1

In Algorithm 2, a set of L partitions {Pl}Ll=1 of the ver-
tices covered by the shortest path tree T is generated, and
the algorithm stops only when T covers the connected com-
ponent of v0.

Step 1 initializes the distances, as does Dijkstra’s algo-
rithm. In Step 4, a set BL containing the |PL| cheapest
border edges with disjoint target vertices is generated by
the quantum routine MINFIND(|PL|, f, g). Step 10 up-
dates the distance of the selected vertex, in a same manner
as in Dijkstra’s. After all the merges of Step 13, the Pk are
sets of vertices of the growing tree, so that |Pk| = 2L−k.
This ensures that since Bk contains |Pk| edges, then at
least one of these edges has its target outside of ∪Lj=1Pk ,
implying in Step 5 at least one border edge exists, and is
effectively selected, thus the correctness of the algorithm
(see [AW19, Appendix A, Proposition 5]). As a side note,
at each step VT contains the growing tree.

Theorem 3.2. In the worst case, Algorithm 2 returns a
shortest path tree covering the graph G = (V,E) in time
Õ(
√
mn).

More precisely, the running time depends on the size of
the connected component in which the starting node v0 is.
Taking into account Theorem 3.2, one can conclude on the
overall time complexity of Algorithm 3.

Theorem 3.3. There exists a quantum algorithm that out-
puts in time Õ(kn1/k

√
mn) with high probability a (2k−1)-

spanner of G with an expected number of edges O(kn1+1/k).

Algorithm 3 QuantumSpanner(G = (V,E), k)

Require: A0 = V ans Ak = ∅
Ensure: H is initially an empty graph
1: for i = 1, · · · , k do
2: if i < k then set Ai such as defined in Equation 6
3: for all v ∈ Ai−1 −Ai do
4: T ← QuantumSPT(G, v)
5: H ← H ∪ T
6: return H

To conclude, setting k = log n+ 1/2, one can construct
(2 log n)-spanners of an input graph with n nodes and m
edges in time Õ(

√
mn).

3.2 Implicit construction of the graph though a
string

In order to stay within a sublinear runtime, one cannot
use an explicit representation as used by Koutis and Xu
in Algorithm 1: indeed, after a single iteration, the out-
putted graph could have up to m

2 ∈ O(n2) edges (see e.g.,
Theorem 2.3).

Apers and de Wolf address this issue by constructing a
random string r ∈ {0, 1}m encoding the discarded edges at
some iteration with 0-valued bits, and later implicitly set-
ting the corresponding weights in the graph to 0, as shown
in Algorithm 4. This enables the construction of a spanner
in the remaining graph. One can then use a Grover search
to the undiscarded Õ(n/ε2) edges, whose union forms the
spectral sparsifier. In addition, it is possible to further
improve the classical complexity, since a k-query quantum
algorithm cannot distinguish a 2k-wise independent strings
from a uniformly random one [Zha15].

At first, a family of independent random bit-strings

ri ∈ {0, 1}m, i ∈
[
log

m

n

]
,

is considered, such that all bits are independent and equal
to 1 with probability 1/4.

Thus the graph is represented throughout the execution
with a bit-string r, where each bit be is sampled only when
edge e is queried.

However, thanks to the result of Zhandry, it is pos-
sible to discard the random strings by considering k-
independent hash functions, whose definition is recalled
in Appendix B, Definition B.1. Hence, such a structure
allows to query for a bit-string element in time Õ(1) with-
out even having to store the bit-string, but still being able
to retrieve it. It is important to stress that it is a purely
classical result.

A quantum oracle that keeps track of the weight updates
is easily constructed. Considering the ith iteration; given
an edge e, let k denote the number of spanners in which e
appears before this iteration.

If k = 0, the weight of the edge e is re-weighted as
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3 QUANTUM SPEED-UP FOR GRAPH SPARSIFICATION

follows:

ω′
e =

4iωe if
i∨

l=1

rl(e) = 1

0 otherwise.

Otherwise, in the case where k > 0, the weight of the edge
e is re-weighted in a different manner, so that

ω′
e =

4i−kωe if
j+1∨
l=1

rl(e) = 1

0 otherwise,

where ∨ is the logical disjunction.

Algorithm 4 QuantumSparsify(G, ε)

Require: ∀e, w′
e = we and l = ⌈log m

n ⌉
Require: ∀i ∈ [log(m/n)], ri ∈ {0, 1}m, ▷ A family of

random strings such that all bits are independent and
equal to 1 w.p. 1

4 .
1: for i = 1, 2, ..., l do
2: create Hi, union of an O( log

2 n
ε2 )-packing of span-

ners of G′ = (V,E,w′)
3: for all e /∈ Hi do
4: if ri(e) = 1 then w′

e ← 4w′
e

5: else w′
e ← 0

6: use repeated Grover search to find Ẽ = {e ∈ E|w′

e > 0}
the edges of G̃

7: return G̃

Intuitively, the unions of the O( log
2 n

ε2 )-packing of span-
ners select the most important edges of the graph, and the
conditional reweighting (Steps 4,5) is a way of keeping a
fraction of the remaining edges in order to spectrally pre-
serve the graph (i.e., asserts that in the end it effectively
(1 + ε)-approximates the input graph). In each iteration,
the remaining graph is classically sparsified using Algo-
rithm 1. The sparsified graph is the one induced by the
vertices of the initial graph and the edges whose weight w

′

e

is greater than 0.

Proposition 3.4. The probability that all log m
n iterations

succeed is 1−O( logn
n2 ).

See proof on page 8.
The overall time complexity of the algorithm depends

on whether the (ri)i are represented with a random string.
By Definition 2.2, the set of spanners is assumed ordered,
allowing to binary search through the set in time Õ(1),
and there is O(i) calls to the aforementioned oracle. The
algorithm requires O(log n) qubits, which is the number of
qubits needed for the quantum spanner algorithm and the
repeated Grover search. In addition a QRAM 2 of Õ(n/ε2)
bits is required since the classical space complexity is dom-
inated by the output size, i.e. the size of the graph.

It is possible to simulate the random strings in Algo-
rithm 4 with k-independent hash functions, and hence

2See Appendix A for details about the QRAM model used herein.

improve the classical space complexity from Õ(n/ε2) to
Õ(
√
mn/ε2).

Considering the efficiently computable search function
f : E → {0, 1} such that

f(e) =

{
1 if w′

e > 0

0 otherwise
,

Grover’s algorithm finds a single edge in time Õ(
√

m
n/ε2 ).

Therefore, retrieving Õ(n/ε2) edges belonging to G̃ takes
time Õ(

√
mn
ε ).

As stated in Theorem 3.3, one can construct a (log2 n/ε2)-
spanner in time Õ(

√
mn/ε2).

The overall time complexity is the sum of the runtimes
needed to simulate the random string, to construct a span-
ner and for the repeated Grover search. Therefore, the
total runtime is

2Õ(
√
mn/ε2) + Õ(

√
mn/ε) = Õ(

√
mn/ε2) .

Theorem 3.5 (Quantum Spectral Sparsification). The
algorithm QuantumSparsify(G, ε) returns with proba-
bility 1 − O(log n/n2) an ε-spectral sparsifier of G with
Õ(n/ε2) edges, in time Õ(

√
mn/ε2) and using a QRAM

of Õ(
√
mn/ε2) bits.

3.3 Time improvement of quantum sparsification

3.3.1 Approximate resistance oracle and spectral
sparsification

From the result of Spielman and Srivastava [SS11], one can
compute a matrix Z such that for all pairs (s, t) of edges
in G,

(1− ε)Rs,t ≤ ||Z · (χs − χt)
2|| ≤ (1 + ε)Rs,t (7)

in time Õ(m/ε2). Z is defined as Z = QW
1
2BL+, where

L = BTWB with B the incidence matrix and W a diagonal
matrix such that (W )ii = ωei , and Q a random ±1/

√
k

matrix (i.e., independent Bernoulli entries). Consequently,
thanks to Equation 5, the matrix Z helps ε-approximate
the effective resistance between any edge e = (s, t) of the
initial graph.

The proof of the existence of such a Z matrix allows one
to efficiently create an oracle for the quantum algorithm.

Theorem 3.6 (Sparsification with approximate resis-
tances [SS11]). Let Re/2 ≤ R̃e ≤ 2Re be a rough
approximation of Re, for each e ∈ E and pe =
min(1, CweR̃e log(n)/ε

2). Then, with probability 1− 1/n,
an ε-spectral sparsifier H with O(n log(n)/ε2) edges can be
obtained by keeping every edge e independently with prob-
ability pe and rescaling its weight with 1/pe.

Theorem 3.6 allows one to efficiently define the {pe} ac-
cording the effective resistance approximations {R̃e}.

5



3 QUANTUM SPEED-UP FOR GRAPH SPARSIFICATION

Since H is an ε-spectral sparsifier of G, we have that for
all edge e of H,

(1− 1/ε)RG
e ≤ RH

e ≤ (1 + 1/ε)RG
e ,

where RG
e and RH

e are effective resistances in G and H,
respectively. From Equation 7, the effective resistances Re

can be approximated with the matrix Z in such a way that
for an edge e = (s, t), the approximated resistance is

R̃e = ||Z · (χs − χt)
2|| .

The probability pe of keeping an edge e is taken to be pro-
portional to R̃e, since an edge will be more important if
it belongs to a weak component, i.e. if it has a high effec-
tive resistance. Thanks to the result of Bollobás [Bol98,
Theorem 25], ∑

e

weRe = n− 1

for connected graphs of order n 3, and thus, one has that∑
e weR̃e = O(n). Since

∑
e pe represents the number

of edges in the sparsifier, if one wants to end up with
O(n log n/ε2) edges in the resulting graph, pe should be
taken proportional to weR̃e log(n)/ε

2.
In order to keep a satisfying approximation of the

weights {we} in the sparsifier, we want to keep unchanged
the expectation value of the weight of each edge. Hence4,
every weight we is re-scaled by 1/pe i.e., w̃e =

we

pe
.

3.3.2 Edge sampling

Classically, Algorithm 5 shows how one can sample a subset
of edges that contains every edge e independently with
probability pe, in time Õ(m+

∑
e pe).

Algorithm 5 ClassicalEdgeSampling(G, ε)

Require: S = ∅
1: approximate {pe}e∈E using Equation 7
2: for all e ∈ E do
3: add edge e to S with probability pe
4: return S

A quantum algorithm could sample a subset of edges
more efficiently. We assume we have access to a random
string r ∈ {0, 1}Õ(m) through the hash function hr : E ×
[0, 1] → {0, 1}, such that for all e ∈ E, hr(e, pe) = 1 with
probability pe and hr(e, pe) = 0 otherwise. From this, it is
possible to construct the following oracle

Os : |e⟩ |v⟩ |w⟩ 7−→ |e⟩ |v ⊕ pe⟩ |w ⊕ hr(e, pe)⟩ .

Due to the fact that the expected number of edges e
for which hr(e, pe) = 1 is

∑
e pe, a repeated Grover search

finds the desired edges in time Õ(
√
m

∑
e pe).

3i.e. with n edges
4Let W̃ be the random variable such that P (W̃ = w̃e) = pe and

P (W̃ = 0) = 1 − pe. Then the expectation value of W̃ is E(W̃ ) =
pew̃e + (1− pe)× 0 = pew̃e.

3.3.3 Refined quantum sparsification algorithm

The runtime of Algorithm 4 can be improved to Õ(
√
mn/ε)

by creating a first "rough" ε-sparsifier H, estimating the
effective resistances of G from H using Laplacian solving,
and then using quantum sampling in order to sample a
subset containing Õ(n/ε2) edges.

Algorithm 6 RefinedQuantumSparsify(G, ε)

1: use Algorithm 4 to construct a (1/100)-spectral sparsi-
fier H of G

2: create a (1/100)-approximate resistance oracle of H
using Theorem 3.6, yielding estimations R̃e

3: use quantum sampling to sample a subset of the
edges, keeping every edge with probability pe =
min(1, CweR̃e log(n)/ε

2)

The Step 1 of Algorithm 6 requires for Õ(
√
mn) to con-

struct the 1/100-spectral sparsifier H, in which each edge
e is such that its effective resistance RH

e satisfies

(1− 1/100)RG
e ≤ RH

e ≤ (1 + 1/100)RG
e .

According to Equation 7, there exists an oracle to derive
approximated resistances {R̃e} in Step 2 such that, for all
edges e = (s, t),

(1− 1/100)RH
e ≤ R̃H

e ≤ (1 + 1/100)RH
e ,

where R̃H
e = ||Z · (χs − χt)

2||. One can then deduce that

(1− 1/100)2RG
e ≤ R̃H

e ≤ (1 + 1/100)2RG
e .

Supposing that each edge e is kept with probability

pe = min(1, CweR̃H
e log(n)/ε2) ,

an ε-spectral sparsifier can be constructed with
O(n log(n)/ε2) edges according to Theorem 3.6. The
approximate oracle needed for this step requires time
Õ(n) to be constructed.

The quantum routine of Step 3 takes time Õ(
√
m

∑
e pe)

where ∑
e

pe ≤
C log(n)

ε2

∑
e

weR̃H
e

≤ (1 + 1/100)2C log(n)

ε2

∑
e

weR
G
e .

As stated in [Bol98], one always has that for a connected
graph of order n,

∑
e weR

G
e = n−1. Therefore, we can con-

clude that
∑

e pe ∈ Õ(n/ε2) which implies that the total
runtime of the quantum sampling routine is Õ(

√
mn/ε).

One can notice that Step 2 only succeeds with prob-
ability 1 − 1

n as claimed by Theorem 3.6. According to
that, one can abort the algorithm as soon as the runtime
exceeds Õ(

√
mn/ε) and start again, yielding a runtime of
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Õ(2
√
mn/ε) = Õ(

√
mn/ε) in the worst case.

The total runtime of Algorithm 6 is the sum of the run-
times of the three steps and it is therefore Õ(

√
mn).

Theorem 3.7 (Quantum Spectral Sparsification).
RefinedQuantumSparsify(G,ε) returns with high prob-
ability an ε-spectral sparsifier H with Õ(n/ε2) edges, and
has runtime Õ(

√
mn/ε). The algorithm uses O(log n)

qubits and a QRAM of Õ(
√
mn/ε).

Having arrived to Theorem 3.7, the main result of the
paper was made explicit. Apers and Wolf’s algorithm thus
implies a quantum speedup for solving Laplacian systems
and for approximating a range of cut problems such as min
cut and sparsest cut.

This result can probably be combined with recent classi-
cal results such as [Che+22] to yield even faster algorithms.
Stay tuned...
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A QRAM Model

To achieve the speed-up promised by the quantum algo-
rithms presented hereby, we assume the existence of a
quantum device able to run quantum subroutines on at
most O(logN) qubits, where N is the size of the problem
or the input.

Besides, we assume an access to a Quantum Random
Access Memory (QRAM) which is, as its classical analog,
composed of an input register, a memory array and an
output register. The main variations are that the input
and output registers are composed of qubits rather than
bits. Thus, the quantum computer can address memory
in superposition meaning that a superposition of inputs
returns a superposition of outputs, so that one can design
the following quantum unitary∑

j

λj |j⟩in |0⟩out
QRAM access−−−−−−−−−→

∑
j

λj |j⟩in |vj⟩out ,

where in, out represent respectively the input and the
output registers and vj the value contained in the j − th
register. Hence, a reading operation corresponds to a
quantum query to the classical bits stored in the memory
array, whereas the operation of writing a bit in the QRAM
stays classical.
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C PROOFS

Within this computational model, the complexity of an
algorithm can have several definitions. One can consider
either the time complexity, which counts the number of ele-
mentary gates (classical and quantum), of quantum queries
to the input and of QRAM operations, or the query com-
plexity which only counts the number of quantum queries
to the input. As an example of actual QRAM, a quantum
optical implementation is presented in [GLM08].

B k-independent hash functions

Definition B.1 (k-independent hashing). Let U be the
set of keys. A family H =

{
h : U → [m]

}
is said to be k-

independent if for all keys x1, · · · , xk in U pairwise distinct
and for all values v1, · · · , vk in [m],

∣∣{h ∈ H ; h(x1) = v1, · · · , h(xk) = vk}
∣∣ = |H|

mk
,

in other words, by providing H with the uniform probabil-
ity, for any h ∈ H

P
(
h(x1) = v1, · · · , h(xk) = vk

)
=

1

mk
.

C Proofs

Proof of Proposition 3.4. Let ps be the probability of suc-
cess and pf be the probability of failure. If ps = 1 − 1

n2

then pe = 1
n2 , since log m

n are done, the global probability
of failure Pf is the sum of each pf , such that

Pf =
1

n2
× log

m

n
.

Since m is the number of edges of the input graph,

m ≤
(
n

2

)
∈ O(n2),

thus

log
m

n
∈ O

(
log

n2

n

)
= O(log n) ,

hence
pe = O

( log n
n2

)
,

the result follows.
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