
L-systems - IG3D assignment
Hugo Thomas
Quantum Information, Sorbonne Université

Foreword: In this short report, I will make a quick re-
view of L-systems, relying on the book The algorithmic
beauty of plants [PL90], without talking about the code
implementation. Since I’m not an IMA master student,
i.e. I’m not familiar with computer graphics and the fact
that the project has to be done in a quite short time, I
have just explored in depth the first three chapters of the
book, i.e. the first ... pages. Moreover, the theoretical
tools have not changed since the release of the book, it
fully covers the state-of-the-art. I will simply explain part
of its content. Finally, it is not possible to sum up the
whole state-of-the-art in a three-pages review, that is why
I have carefully chosen to explain only the parts that are
the most interesting to me.

L-Systems

This section presents the simplest class of L-systems,
those which are deterministic and context-free, called D0L-
systems. One could define L-systems as a formal way of
defining developmental processes, that suits well to organic
models, and especially plant-development models. More
formally, an L-system G is defined as a tuple 〈V, ω, P 〉,
where V is the alphabet of symbols, ω ∈ V + is the axiom,
and P ⊂ V × V ∗ is the set of production rules, also called
rewriting rules: it takes a character c ∈ V and returns a
string s ∈ V ∗. The axiom is the starting character of the
L-system, that will fully determine the iteration process.
Let si be the result of the ith iteration, we define s0 = ω.
An iteration consists of the transformation si → si+1 de-
fined by the successive transformations of the characters
of si according to the production set P .
For the sake of simplicity, if x and y are two string in V ∗,
then xy is the concatenation of x and y.

Example: Let G1 = 〈V, ω, P 〉, where V = {A,B};ω =
A;P = {A → AB,B → BA}. Then the iterations go as
follows:

s0 = ω = A

s1 = P (A) = AB

s2 = P (A)P (B)

= ABBA

s3 = P (A)P (B)P (B)P (A)

= ABBABAAB

(1)

It almost fully describes an L-system, we now need to
interpret the result of an iteration.

Turtle

Turtle graphics, firstly defined by the Logo programming
language [Tho83] is a descriptive way of defining computer

drawings. We can hence consider an interpretation of some
characters (not necessarily all of them) of the alphabet.
This will make the turtle move on the screen, and hence
draw. For example, F moves forward a step l, + turns
clockwise the turtle of an angle δ, and − turns counter-
clockwise the turtle of an angle δ.

Example: If we let l = 1, δ = 90, and consider the sen-
tence FFF + FF + F + F − F − FF + FFF , then the
turtle graphics formalism yields the following, starting in
(0, 0):

(0,0)

Figure 1: Example of turtle drawing.

By combining the L-System formalism and the tur-
tle graphics, one can easily generate fractal like patterns,
thanks to the recursive structure of L-systems. (n is the
number of iterations)

Figure 2: Fractal-like L-system model, n = 8, def. A.1

Fig. 2 shows a fractal-like model where each pattern re-
peats itself, this comes from the recursive manner of defin-
ing an iteration.

More realistic L-systems

This definition of L-systems yields interesting and fractal-
like results, but we need to add a branching possibility
in order to obtain plant-like results. This is achieved by
considering a stack of turtle states and its associated op-
erations: Push and Pop. Those two operations are usually
represented by the characters [and] respectively. This
enhancement yield results shown in Fig. 3 and 4.

1

Figure 3: Fuzzy tree, n = 7, def. A.3

The plant-like pattern appears directly, however, we
will explore some enhancement techniques in order to make
those more realistic. The issue that one faces with this kind
of very simple L-system, is that the plant generated by a
L-system is unique, and the artificial regularity is striking.
To solve this problem, it is possible to randomize the turtle
parameters, the L-system or both.

Randomizing only the turtle parameters has the ef-
fect of letting the underlying structure of the results un-
changed, while randomizing the L-system itself probabilis-
tically changes the structure, which has the effect of mak-
ing the result more realistic. Combining the two options is
in the end the preferable solution. Such a result is shown
in Fig. 6.

Figure 4: Aglae, n = 18

The list of species being described by L-systems gram-
mar is vastly increasing. Models have been made: cu-
cumber growth [HTS0001], sunflower [PL90] (see Fig. 5),
barley [BSHK+0708], sorghum [KHR00].

Figure 5: The famous sunflower of Prusinkiewicz and Lin-
denmayer, described by an L-system of only 8 lines of code.

Figure 6: Results generated by a stochastic L-system,
n = 8

Developmental models of herba-
ceous plants

In the case of self-similar structures, like trees illustrated in
Fig. 3 4 6, the synthesis methods based on rewriting rules,
are fairly expressive and randomizing strategies fix the
problem of unnatural regularity. However, a more general
approach is needed to model the large variety of develop-
mental patterns and structures found in nature, especially,
it is not possible to obtain Fig. 5 only with 0L-systems.
When one observes nature, one sees that the flower de-
velopment is, although repetitive, highly controlled. For
instance, in most of the cases when a flower grows, the
stem grows first, and in the end the flower appears. Par-
tial L-systems offer this possibility, especially for the case
of single-flower shoot.

Partial L-systems

Partial L-systems can express the vegetative growth of
a plant and, after a certain time, the production of the
flower. It’s not in essence a new kind of L-systems, in the
sense that it is completely defined by a stochastic L-system,
but arises from the interpretation of these. Considering the

2

example given in [PL90] :

ω : a

a→

{
I[L]a w.p. α

I[L]A w.p. β

A→K

(2)

We of course have to have α+ β = 1, α, β ≥ 0. The flower
stays in its vegetative phase as long as the rule a→ I[L]a
is applied, and once the rule a → I[L]A is selected, the
shot stops and the flower appears. It is hence possible to
control the average height of the flower, by controlling the
ratio α

β , that can be interpreted as the average height of
the result as shown in Fig. 7. Note that the number of
iterations is an upper-bound, since the rule a → I[L]A is
blocking.

Figure 7: Partial L-system results, n = 6, def.(2)

Context-sensitive L-systems

Unlike the 0L-systems in which production rules are ap-
plied regardless of the context, context-sensitive L-systems,
apply rules depending on the context of the character
evaluated, that is, its predecessors and successors. This
effect is useful in simulating interactions between plant
parts. We thus introduce production rules of the form
al < a > ar → χ, where the rule a → χ is applied if and
only if a is preceded by al and followed by ar. This allows
to move characters (see example), and then introduce a
sort of timer in the process. Systems in which we consider
only one side for the context are denoted 1L-systems, and
the one where we consider the two neighbors of a character,
as the following example, are called 2L-systems.

Example (from [PL90], shortened):

ω : baaa

b < a→ b

a < b > ∅ → f

b→ a

(3)

The first generated sentences are given below:

baaa⇒ abaa⇒ aaba⇒ aaab⇒ aaaf (4)

Note: The priority of the rule application not is given by
their order of definition, but by the range of their context
the broadest context is given priority.

After the 4th iteration, the character f appears at the
end of the sentence, meaning that if we associate f to the
flower and a to the stem, then the flower appears after four
iterations at the top of the stem. It is easy, starting from
this example, to infer how one can use context-sensitive
L-systems to create flower-like models.

Open problems - Miscellaneous

An interesting application of parametric context-sensitive
L-systems has been exposed by Hammel and Prusinkiewicz
[HP03], is the use of those systems to express numerical
solutions to initial value problems for partial differential
equation.

Every 0L-system G defines an obvious set of deriva-
tions E(G). Those objects, the 0L sequence languages
have been studied in [Roz80].
Open problem: Given two arbitrary OL-systems G1 and
G2, is it possible to decide whether E(G1) = E(G2)?
R. Book conjectured that the answer to the above question
is positive.

A locally contenative sequence is a sequence of words in
which each word can be constructed as the concatenation
of previous words in the sequence.
Open problem: Is it decidable whether an arbitrary
DOL-system is locally contenative ?

The above problem constitutes today perhaps the most
important open problem concerning DOL systems.

References

[BSHK+0708] Gerhard Buck-Sorlin, Reinhard Hemmerling, Ole
Kniemeyer, Benno Burema, and Winfried Kurth, A
Rule-based Model of Barley Morphogenesis, with Spe-
cial Respect to Shading and Gibberellic Acid Signal
Transduction, Annals of Botany 101 (200708), no. 8,
1109–1123, available at https://academic.oup.com/

aob/article-pdf/101/8/1109/377665/mcm172.pdf.

[HP03] Mark Hammel and Przemyslaw Prusinkiewicz, L-
systems and partial differential equations, 2003.

[HTS0001] T. Higashide, M. Takaichi, and H. Shimaji, Modeling
of cucumber growth using the l-system, Acta Horti-
culturae 519 (200001), 43–52.

[KHR00] P Kaitaniemi, J.S Hanan, and P.M Room, Virtual
sorghum: visualisation of partitioning and morpho-
genesis, Computers and Electronics in Agriculture 28
(2000), no. 3, 195–205.

[PL90] Przemyslaw Prusinkiewicz and Aristid Lindenmayer,
The algorithmic beauty of plants, 1990.

[Roz80] Grzegorz Rozenberg, A survey of results and open
problems in the mathematical theory of l systems, For-
mal language theory, 1980, pp. 195–239.

[Tho83] David D. Thornburg, Friends of the turtle: On logo
and turtles, 1983.

3

https://academic.oup.com/aob/article-pdf/101/8/1109/377665/mcm172.pdf
https://academic.oup.com/aob/article-pdf/101/8/1109/377665/mcm172.pdf

A L-systems definitions

A.1 Triangle

Parameters:

l = 10

δ = 60
(5)

System:

ω : A

B → −A+B +A−
A→ +B −A−B+

(6)

A.2 Fuzzy tree

Parameters:

l = 10

δ = 22
(7)

System:

ω : X

F → FF

X → F − [[X] +X] + F [+FX]−X

(8)

A.3 Randomized tree

Parameters:
l = 10

δ = 15
(9)

System:

ω : X

F → FF

X →

F − [[XC] +XC] + [[XC] +XC]−X w.p. 14
F − [[XC] +XC] + [−FXC] +X w.p. 14
F [+XC][−XC]FX w.p. 14
F [+XC]F [−XC] +X w.p. 14

(10)

4

	L-systems definitions
	Triangle
	Fuzzy tree
	Randomized tree

